segunda-feira, 10 de dezembro de 2012


Representação Gráfica de uma onda Sonora

As ondas sonoras são ondas de pressão, que resultam de zonas de compressão intercaladas com zonas de expansão.

Imagem do livro "FQ8 - Sustentabilidade na Terra - Edições ASA".
As zonas de compressão estão representadas a azul escuro na imagem e representam locais onde as partículas se encontram muito próximas umas das outras. As zonas de expansão estão representadas a branco na imagem e representam locais "vazios", sem partículas. Na representação gráfica de uma onda sonora, consideram-se:
as zonas de compressão como cristas;
as zonas de expansão como ventres.

Ondas Longitudinais

As ondas sonoras são ondas Longitudinais. Relembra o simulador do movimento das partículas do ar apresentado anteriormente:
No exemplo do simulador, a onda propaga-se na horizontal (desde o local onde vibra a corda da guitarra até ao lado direito do ecrã - as primeiras parículas a vibrar são as que se encontram junto da corda), e as partículas de ar vibram também na horizontal (efectuam o movimento esquerda, direita, esquerda, direita, ...). Assim, diz-se que a direcção de propagação (que é a horizontal) é igual à direcção de vibração (que também é a horizontal). Por esse motivo este tipo de ondas são chamadas de longitudinais. Ocorre o mesmo quando se faz vibrar uma mola tal como representado na figura seguinte.
Ondas Longitudinais
A vibração ocorre ao longo da direcção de vibração.
Imagem do livro "FQ8 - Sustentabilidade na Terra - Edições ASA".

sexta-feira, 7 de dezembro de 2012

Ondas



Superposição de ondas periódicas


A superposição de duas ondas periódicas ocorre de maneira análoga à superposição de pulsos.
Causando uma onda resultante, com pontos de elongação equivalentes à soma algébrica dos pontos das ondas sobrepostas.
A figura acima mostra a sobreposição de duas ondas com períodos iguais e amplitudes diferentes (I e II), que, ao serem sobrepostas, resultam em uma onda com amplitude equivalente às suas ondas (III). Este é um exemplo de interferência construtiva.
Já este outro exemplo, mostra uma interferência destrutiva de duas ondas com mesma frequência e mesma amplitude, mas em oposição de fase (I e II) que ao serem sobrepostas resultam em uma onda com amplitude nula (III).
Os principais exemplos de ondas sobrepostas são os fenômenos ondulatórios de batimento e ondas estacionárias.
  • Batimento: Ocorre quando duas ondas periódicas de frequência diferente e mesma amplitude são sobrepostas, resultando em uma onda com variadas amplitudes dependentes do soma de amplitudes em cada crista resultante.
Ondas estacionárias: É o fenômeno que ocorre quando são sobrepostas duas ondas com mesma frequência, velocidade e comprimento de onda, na mesma direção, mas em sentidos opostos. 
 

Irene Pereira Dias 

quinta-feira, 6 de dezembro de 2012

Onda



Onda

Em física, uma onda é uma perturbação oscilante de alguma grandeza física no espaço e periódica no tempo. A oscilação espacial é caracterizada pelocomprimento de onda e o tempo decorrido para uma oscilação é medido pelo período da onda, que é o inverso da sua frequência. Estas duas grandezas estão relacionadas pela velocidade de propagação da onda.
Fisicamente, uma onda é um pulso energético que se propaga através do espaço ou através de um meio (líquido, sólido ou gasoso). Segundo alguns estudiosos e até agora observado, nada impede que uma onda magnética se propague no vácuo ou através da matéria, como é o caso das ondas eletromagnéticas no vácuo ou dos neutrinos através da matéria, onde as partículas do meio oscilam à volta de um ponto médio mas não se deslocam. Exceto pela radiação eletromagnética, e provavelmente as ondas gravitacionais, que podem se propagar através do vácuo, as ondas existem em um meio cuja deformação é capaz de produzir forças de restauração através das quais elas viajam e podem transferir energia de um lugar para outro sem que qualquer das partículas do meio seja deslocada; isto é, a onda não transporta matéria. Há, entretanto, oscilações sempre associadas ao meio de propagação.
Uma onda pode ser longitudinal quando a oscilação ocorre na direcção da propagação, ou transversal quando a oscilação ocorre na direcção perpendicular à direcção de propagação da onda.

Efeito Doppler



SÁBADO, 3 DE DEZEMBRO DE 2005
O Efeito Doppler

Ilustração das ondas sonoras
emitidas de um objecto em movimento


Efeito Doppler é uma características das ondas sonoras em movimento em relação ao observador. O comprimento de onda observado é maior ou menor conforme a fonte de ondas se afaste ou se aproxime do observador. Quando a fonte sonora e/ou observador se aproximam, a frequência da onda recebida (frequência aparente) pelo observador fica maior (som mais agudo). Ao se afastarem a frequência aparente diminui (som grave).

Também se observa um efeito análogo na ondas luminosas. Nas ondas luminosas este fenÔmeno é observado quando a fonte e/ou observador se afastam ou se aproximam com grande velocidade relativa. Neste caso, o espectro da luz recebida apresenta desvio para o vermelho (quando se afastam) e desvio para o violeta (quando se aproximam).

O efeito Doppler apresenta várias aplicações. Permite a medição da velocidade relativa das estrelas (como a luz recebida das estrelas apresentam um desvio para o vermelho (1) - menor frequência -, os astrónomos concluem que o universo está em expansão). Permite também a medição da velocidade de objectos móveis (automóveis, aviões, etc.) através de radares ou lasers. Na medicina, um ecocardiograma utiliza este efeito para medir a direcção e velocidade do fluxo sanguíneo ou do tecido cardíaco.
Foi-lhe atribuído este nome em homenagem a Christian Andreas Doppler que o descreveu pela primeira vez em 1842.


(1) - Em termos muito simples o desvio para o vermelhocorresponde a uma alteração na forma como a luz é observada em função da velocidade relativa do seu emissor e do seu receptor.

Dada a constante da velocidade da luz e admitindo um emissor e um receptor fixos, um raio de luz é captado como uma cor fixa, em função da sua frequência. Na sua vertente de onda, a frequência da luz (ou cor) é definida pelo espaço de tempo entre duas cristas consecutivas da onda, que não varia no exemplo anterior.


Se o emissor se move na direcção do receptor, o espaço de tempo que este mede entre duas cristas consecutivas será inferior, observando um aumento da frequência e, logo, um desvio para a gama de cores de mais elevada frequência (desvio para o azul).

Se, pelo contrário, o emissor se afasta do receptor, o espaço de tempo que este mede entre duas cristas consecutivas aumenta, observando um desvio para a gama de cores de mais baixa frequência (desvio para o vermelho).

Na origem deste fenómeno está o Efeito Doppler que explica, pelo mesmo motivo, porque é que o apito de uma locomotiva soa mais agudo (frequência mais elevada) quando esta se aproxima do ouvinte.

Em Astronomia o desvio para o vermelho tornou-se um tema de destaque quando se observou este fenómeno em todas as galáxias, implicando que todas se estão a afastar da Via Láctea. Posteriormente apurou-se que não só isso acontece como em geral elas se afastam entre si, ilustrando o estado de expansão acelerada do Universo e reflectindo uma origem comum no Big Bang.
Efeito Doppler


Efeito Doppler é uma característica observada nas ondas quando emitidas ou refletidas por um objeto que está em movimento com relação ao observador. Foi-lhe atribuído este nome em homenagem a Johann Christian Andreas Doppler, que o descreveu teoricamente pela primeira vez em 1842. A primeira comprovaçao foi obtida pelo cientista alemão Christoph B. Ballot, em 1845, numa experiência com ondas sonoras.
Em ondas eletromagnéticas, este mesmo fenômeno foi descoberto de maneira independente, em 1848, pelo francês Hippolyte Fizeau. Por este motivo, o efeito Doppler também é chamado efeito Doppler-Fizeau.
Ilustração das ondas sonorasemitidas de um objecto em movimento.

[editar]Características


Ondas emitidas por objetos estáticos se propagam em todas as direções de maneira uniforme. Seu comprimento de onda é λ=2π/β, sendo β uma constante que define o meio pelo qual a onda de propaga, chamada constante de fase. A velocidade de fase da onda é dada por V_f = \lambda f, logo . Quando um objeto está em movimento, as ondas emitidas estão em pontos diferentes ao longo da trajetória. Isto implica que cada onda emitida está mais próxima da onda anteriormente emitida, logo seu comprimento de onda tem um valor diferente, dependendo do ponto onde se observe a onda. O comprimento de onda observado é maior ou menor conforme sua fonte se afaste ou se aproxime do observador. Se o comprimento de onda variar, a sua frequência varia também.
No caso de aproximação, a frequência aparente da onda recebida pelo observador fica maior que a frequência emitida. Ao contrário, no caso de afastamento, a frequência aparente diminui.
Um exemplo: ao atirar uma pedra em um lago, se olharmos por cima veremos que as ondas estão igualmente espaçadas. Quando uma pedra é atirada de modo a quicar na superfície da água, observamos que à frente da pedra a distância entre as ondas é menor. Se o comprimento de onda diminui, a frequência aumenta. Quando o objeto se afasta, a distância entre as ondas é maior, o que implica que a frequência é menor.
Outro exemplo típico é o caso de uma ambulância com sirene ligada que passe por um observador. Ao se aproximar, o som é mais agudo e ao se afastar, o som é mais grave. De modo análogo, ao trafegar em uma estrada, o ruído do motor de um automóvel que vem em sentido contrário apresenta-se mais agudo enquanto ele se aproxima e mais grave a partir do momento em que se afasta (após cruzar com o observador).
Para a luz, este fenómeno é observável quando a fonte e o observador se afastam ou se aproximam com grande velocidade relativa. Neste caso, o espectro da luz recebida apresenta desvio para o vermelho (quando se afastam) e desvio para o violeta (quando se aproximam).

Medida de velocidades
O efeito Doppler permite medir a velocidade de objectos através da reflexão de ondas emitidas pelo próprio equipamento de medida, que podem ser radares, baseados em radiofrequência, ou lasers, que utilizam frequências luminosas. É muito utilizado para medir a velocidade de automóveis, aviões, bolas de tênis e qualquer outro objeto que cause reflexão, como, na Mecânica dos fluidos e na Hidráulica, partículas sólidas dentro de um fluido em escoamento.
Basicamente um radar detecta a posição e velocidade de um objeto transmitindo uma onda e observando o eco. Um radar de pulso emite uma rajada (Burst) curta de energia. Depois o receptor é ligado para “escutar” o eco. O transmissor do radar pode operar melhor se uma onda for emitida continuamente, desde que haja a possibilidade de separar o sinal transmitido do eco no receptor. A potencia do eco é da ordem de 10^{-18} vezes menor que o sinal transmitido, ou até menor. O desvio de frequência resultante de objetos em movimento é conhecido como “Frequência de desvio Doppler” (FD). Se há uma distância X entre o objeto e o radar, o número total de comprimentos de onda existentes entre o sinal do radar e do objeto é dado por 2R/ λ. Já que uma onda corresponde a 2π radianos, a excursão angular entre o caminho de ida e volta do objeto é \frac{4 \pi R}{\lambda} = \phi. Para objetos em movimento a distância muda sempre, o que implica que Φ também varia. Uma mudança de Φ no tempo implica mudança de frequência. A frequência de desvio Doppler é a diferença entre a frequência da onda transmitida (Ft) e a frequência recebida no receptor (Fr): Ft = |Ft-Fr| ω = 2πFd
Algumas Aplicações
  • Em astronomia, permite a medida da velocidade relativa das estrelas e outros objetos celestes luminosos em relação à Terra. Estas medidas permitiram aos astrónomos concluir que o universo está em expansão, pois quanto maior a distância desses objetos, maior o desvio para o vermelho observado. O Efeito Doppler para ondas eletromagnéticas tem sido de grande uso em astronomia e resulta em desvio para o vermelho ou azul.
  • Na medicina, um ecocardiograma utiliza este efeito para medir a direção e velocidade do fluxo sanguíneo ou do tecido cardíaco. O ultra-som Doppler é uma forma especial do ultra-som, útil na avaliação do fluxo sanguíneo do útero e vasos fetais. Pode ser mostrado de várias formas: com som audível, com espectro de cores dentro do vaso ou na forma de gráficos que permitem a mensuração na velocidade sanguínea nos tecidos normais.
  • O efeito Doppler é de extrema importância em comunicações a partir de objetos em rápido movimento, como no caso dos satélites.
  • A Fórmula do efeito Doppler é dada por: F_o = F_f  \frac{V \pm V_o}{ V \mp V_f}
Onde:
  • F_o = \mbox{Frequência que o observador escuta}\,\!
  • F_f = \mbox{Frequência real da fonte}\,\!
  • V = \mbox{Velocidade da onda}\,\!
  • V_o = \mbox {Velocidade do observador (positiva ao se aproximar da fonte, negativa ao se afastar)}\,\!
  • V_f = \mbox {Velocidade da fonte (Positiva ao se afastar, negativa ao se aproximar do observador)}\,\!

Kairo Santos (28)


O que é uma onda?
Considere uma corda esticada, com uma das suas extremidades presa a uma parede e a outra segura por uma pessoa. Se a pessoa realizar um movimento rítmico de sobe-e-desce com a mão, fará com que uma onda se propague na corda esticada, como mostra o desenho.
Embora a onda se movimente da esquerda para a direita, a corda não se movimenta nesse sentido. Os diversos trechos da corda realizam apenas movimento de sobe-e-desce, mas a corda continua com uma onda presa à mão da pessoa e a outra ponta presa à parede. Em outras palavras, quando uma onda se propaga em uma corda ela não leva a corda consigo.

O conceito de onda
Ondas são perturbações regulares que se propagam, mas não transportam matéria. As ondas apenas transportam energia. A Ondulatória é a parte da física que estuda as ondas e os fenômenos relacionados a elas.

Tipos de ondas

As ondas que produzimos ao tocar as cordas de um violão ou as que se propagam em um lago onde atiramos uma pedra são chamadas de ondas mecânicas.
Ondas mecânicas são aquelas que precisam de um meio material para se propagar. As ondas do mar e as ondas que produzimos numa corda de violão, o som, são exemplos de ondas mecânicas.
Entretanto, nem todas as ondas precisam de um meio para a sua propagação. A luz, por exemplo, é uma onda emitida pelo Sol que se propaga até a Terra sem haver um meio material entre eles. Isso também ocorre com as ondas de rádio, as ondas de raio X e as ondas térmicas. Essas ondas denominadas ondas eletromagnéticas, propagam-se tanto na matéria quanto no vácuo, ou seja, em lugar sem matéria alguma.
As ondas se classificam em ondas mecânicas - aquelas que necessitam de um meio material para se propagar – e ondas eletromagnéticas – que não precisam de um meio material para se propagarem.